Code: 23BS1101

I B.Tech - I Semester - Regular Examinations - JANUARY 2024

LINEAR ALGEBRA & CALCULUS (Common for ALL BRANCHES)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

 $BL-Blooms\ Level$

CO – Course Outcome

PART - A

		BL	CO
1.a)	Estimate the value of a , if the rank of the matrix	L2	CO1
	[1 2 3]		
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 4 \\ 1 & -1 & 1 \end{bmatrix} $ is 2		
1.b)	If the initial approximation to the solution of	L3	C04
	10x+2y+z=9, $2x+20y-2z=-44$, $-2x+3y+10z=22$ is		
	(x, y, z) = (0,0,0) then find the first approximation by		
	using Gauss-Seidel iteration method.		
1.c)		L2	CO2
	If the eigen values of $A = \begin{vmatrix} -1 & 5 & -1 \end{vmatrix}$ are 2, 3 & 6 then		
	$\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$		
	predict the eigen values of A^{-1} .		
1.d)	Write down the quadratic form X^TAX corresponding to	L2	CO4
	$\begin{bmatrix} 1 & 3 & -5 \end{bmatrix}$		
	the symmetric matrix $A = \begin{bmatrix} 1 & 3 & -5 \\ 3 & 2 & 0 \end{bmatrix}$		
	$\begin{bmatrix} -5 & 0 & -4 \end{bmatrix}$		
1.e)	Discuss the applicability of Cauchy's mean value	L2	CO3
	theorem for		
	f(x) = (-x, if - 4 < x < 0)		
	$f(x) = \begin{cases} -x, & if -4 < x < 0 \\ x, & if 0 \le x < 4 \end{cases}$ and $g(x) = x^2$ in		
	[-4, 4]		

1.f)	State the Maclaurin's series expansion of $f(x)$ about	L1	CO3
	x = 0.		
1.g)	$2x^2y$	L2	CO1
	Estimate $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{2x^2y}{x^2 + y^2 + 1}$		
1.h)	Estimate the first and second order partial derivatives	L2	CO1
	of $f(x, y) = ax^2 + 2hxy + by^2$		
1.i)	Write the limits by changing the order of integration of	L2	CO5
	the double integral $\int_0^1 \int_y^{y^2} (x+y) \ dxdy$ with the		
	help of region of integration.		
1.j)	Calculate the double integral $\int_0^1 \int_0^1 xy \ dy dx$.	L3	CO5

PART – B

			BL	СО	Max. Marks		
	UNIT-I						
2	a)	Discover the rank of the matrix	L3	CO2	5 M		
		$\begin{bmatrix} -1 & 1 & -3 & -3 \end{bmatrix}$					
		$\begin{bmatrix} -1 & 1 & -3 & -3 \\ 1 & 0 & 1 & 2 \end{bmatrix}$ by reducing the matrix to					
		Echelon form.					
	b)	Solve the system of non-homogeneous	L3	CO2	5 M		
		linear equations $5x_1 + 3x_2 + 7x_3 = 4$,					
		$3x_1 + 26x_2 + 2x_3 = 9$ and $7x_1 + 2x_2 + 10x_3 = 5$					
	OR						
3	a)	Apply Gauss Jordan method to find the	L3	CO2	5 M		
		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$					
		inverse of the matrix $\begin{vmatrix} 3 & -2 & 1 \\ 1 & 2 & 1 \end{vmatrix}$					
		$\begin{bmatrix} 4 & 2 & 1 \end{bmatrix}$					
	b)	Make use of Jacobi's method to find first	L3	CO2	5 M		
		five iterations of the following system of					
		equations $20x + y - 2z = 17$,					
		3x + 20y - z = -18, $2x - 3y + 20z = 25$					

UNIT-II					
4	a)	Calculate the characteristic roots and	L3	CO2	5 M
		characteristic vectors of the matrix			
		$\begin{bmatrix} 8 & -6 & 2 \end{bmatrix}$			
		$\begin{vmatrix} A = \begin{vmatrix} -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$			
		2 −4 3			
	b)		L4	CO4	5 M
		the quadratic form to discuss the rank and			
		nature of the quadratic form			
		$-x_1^2 - 4x_2^2 - x_3^2 + 4x_1x_2 - 4x_2x_3 - 2x_1x_3$			
	I	OR	T	T T	
5	a)	Verify Cayley-Hamilton theorem for the	L3	CO2	5 M
		$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \end{bmatrix}$			
		matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence find A^4 .			
	b)		1.2	CO2	5 M
	b)	Use Diagonalization to find the matrix A, if the eigen values of a matrix A of order 3	L3		J WI
		and the corresponding eigen vectors are			
		[11 [2] [2]			
		$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ respectively.			
		UNIT-III			
6	a)	Check the applicability of Rolle's theorem,	L3	CO5	5 M
		if applicable verify theorem for the function			
		$\log \left\{ \frac{x^2 + ab}{x(a+b)} \right\} \text{ in } [a,b], \text{ where } 0 < a < b$			
	b)	Construct the series expansion of	L3	CO5	5 M
		$f(x) = \log(1+x)$ in powers of x up to third			
		degree terms.			
OR					
7	a)	Apply mean value theorem to prove that	L3	CO5	5 M
		$\left \frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2} (0 < a < b) \right $			
		and hence deduce that			
		$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}.$			

	b)	Discover the series expansion of	L3	CO5	5 M
	,	$f(x) = \sin x \text{ in powers of } x - \frac{\pi}{4}$			
		UNIT-IV			
8	a)	Point out the functions	13	CO5	5 M
0	α)	$u = x e^y \sin z$, $v = x e^y \cos z$, $w = x^2 e^{2y}$	LJ		J 1V1
		are functionally dependent or not. If			
		functionally dependent, find the relation			
		between them.			
	b)	J 1	L3	CO3	5 M
		then find extreme values of			
		$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$			
9	۵)	OR Make use of functional determinant to show	L3	CO5	5 M
9	a)	Make use of functional determinant to show $\partial(u,v) = 3$	L3	CO3	3 IVI
		that $\frac{\partial(u,v)}{\partial(r,\theta)} = 6r^3 \sin 2\theta$ where			
		$u = x^2 - 2y^2, v = 2x^2 - y^2$ and $x = r\cos\theta, y = r\sin\theta$			
	b)	Divide twenty-four into three parts such that	L4	CO3	5 M
		the continued product of the first part,			
		square of the second part and the cube of			
		third part is maximum.			
		UNIT-V			
10	a)		L3	CO5	5 M
	,	evaluate the double integral			
		$\int_0^2 \int_{e^x}^e \frac{1}{\log x} dy dx$			
	b)	Calculate the volume of the solid bounded	L3	CO3	5 M
		by the planes			0 111
		x = 0, y = 0, z = 0 and x + y + z = 1.			
OR					
11	a)	Calculate the triple integral	L3	CO5	5 M
		$\int_{-1}^{1} \int_{0}^{2} \int_{1}^{3} x^{2} y^{2} z^{3} dx dy dz.$			
	b)	Discover the area enclosed by the pair of	L3	CO3	5 M
		curves $y^2 = x$ and $y = x^2$ using double			
		integration.			